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Rules for determining a unique natural tiling that carries a given three-periodic

net as its 1-skeleton are presented and justified. A computer implementation of

the rules and their application to tilings for zeolite nets and for the nets of the

RCSR database are described.

1. Introduction

Chemists have long had an interest in describing the topology

of crystal structures in terms of nets (Wells, 1977, 1979).

Recently, there has been substantial interest in systematic

enumeration of periodic nets (Hyde et al., 2006; Treacy et al.,

1997, 2004; Blatov, 2007) and one of the most fruitful methods

has been the enumeration of periodic tilings, and hence the

nets they carry (Delgado-Friedrichs et al., 1999; Delgado-

Friedrichs & Huson, 2000; Delgado-Friedrichs & O’Keeffe,

2005a, 2006, 2007). At the same time, it has proved fruitful to

discuss tilings associated with a particular net and to use them

in a classification scheme for nets (Delgado-Friedrichs et al.,

2003a,b, 2006, 2007). We indicate later other reasons for

associating a tiling with a net. However, although a tiling

carries a unique net of edges and vertices, for a given net there

may be many possible tilings that carry that net, or perhaps

none at all. However, we have developed the idea of a unique

natural tiling (Delgado-Friedrichs et al., 2003a), although we

acknowledge the earlier related work of Schoen (1970). For

some complicated nets that arise in crystal chemistry and

elsewhere, the rules given earlier have to be elaborated to

result in a unique tiling. These are the subject of this paper. We

start with some informal definitions.

2. Definitions

A net is a special kind of graph. It is simple – the edges are

undirected and there are no multiple edges or loops, and it is

connected – there is at least one path between every pair of

vertices. All the nets discussed in this paper are three-periodic,

i.e. their automorphism groups contain translations in three

non-coplanar directions. For a more complete list of terms and

definitions relevant to the consideration of crystal nets as

graphs, see Delgado-Friedrichs & O’Keeffe (2005b).

Tilings divide Euclidean space into tiles and again all the

tilings we discuss are three-periodic. They are always face-to-

face, i.e. a face of a tile is shared by exactly two tiles. A tile is

the interior of a generalized polyhedron (a cage) that may

contain divalent vertices and is topologically equivalent to a

sphere.

The edges and vertices of a polyhedron sensu stricto form a

net that is a planar three-connected graph. A simple poly-

hedron has exactly three faces and three edges meeting at

each vertex. A simple tiling is a tiling by simple polyhedra in

which four tiles meet at each vertex, three at each edge and

two at each face. Foams are simple tilings by bubbles.

A tiling is proper if the automorphism group of the tiling is

the same as that of the graph it carries (its 1-skeleton). The

nets we consider here in the context of natural tilings are

crystallographic in the sense that they have an automorphism

group that is isomorphic to a three-dimensional space group

and it is this symmetry that is implied when we talk about the

symmetry of a net unless we explicitly refer to a lower-

symmetry embedding. For a discussion of nets for which the

automorphism group may not be isomorphic to a space group

– e.g. some nets with ‘collisions’ in a barycentric placement –

see Delgado-Friedrichs & O’Keeffe (2003). As a periodic

tiling always has a space-group symmetry, non-crystal-

lographic nets do not have a proper tiling as defined above.

The dual of a tiling is a second tiling obtained as follows. A

new vertex is placed inside each original tile and connected to

the new vertices in adjacent tiles sharing a common face by an

edge through that face. To complete the construction, new tiles

are constructed so that the dual of the dual is the original

tiling. If a tiling and its dual are identical, the tiling is self-dual.

The dual of a proper tiling need not be, and often is not, a

proper tiling; an example is shown in Fig. 10 below.

The transitivity of a tiling is a sequence of four integers pqrs

that indicates that the tiling has p types of vertex, q types of

edge, r types of face and s types of tile.

The vertices and edges of the faces of tiles are polygons, not

necessarily planar. In the language of graph theory, they are

cycles of the graph. Special kinds of cycles are rings, which are



cycles that are not the sum of two smaller cycles, and strong

rings, which are cycles that are not the sum of any number of

smaller cycles (Goetzke & Klein, 1991; see also Delgado-

Friedrichs & O’Keeffe, 2005b). A ring that is not a strong ring

is a weak ring.

It is sometimes useful to give face symbols for tiles. These

are of the form [Mm.Nn . . . ] and indicate that there are m faces

that are M-rings, n faces that are N-rings etc. Conventionally,

M < N < . . . The set of face symbols for a tiling, e.g. 2[34] + [38]

for a space filling by tetrahedra and octahedra in the ratio 2:1

is called the signature of the tiling.

Nets are given a symbol consisting of either three letters in

boldface as in abc or three letters and extensions as in abc-d or

abc-d-e. Crystallographic and other data can be found for

these nets in the RCSR database at http://rcsr.anu.edu.au/.

3. Some nets with unique proper tilings

The simplest, and most regular, tiling of Euclidean space is the

space-filling by equal cubes, Fig. 1. The symmetry of the tiling

and the net (symbol pcu) is Pm�33m. It should be clear that we

could make a tiling using double cubes (cubes sharing a face,

Fig. 1) or indeed multiple cubes in a great variety of ways – in

fact, an infinite number of ways. We could also divide the cube

into smaller units as also shown in Fig. 1. Indeed, a cube can be

subdivided in 12 distinct ways without introducing new

vertices or edges (Bonneau et al., 2004) and these subdivided

cubes can be again assembled into many distinct tilings of pcu.

One can also subdivide the fused cubes. However, it is easy to

show that all these additional tilings will have lower symmetry

so there is only one proper tiling of pcu. Specifically, all

subdivisions of a cube destroy some of the symmetries of the

cube, and all tilings by multiple cubes must lose some trans-

lations. So in this case the proper tiling is unique and we call it

a natural tiling. Our first rule for a natural tiling is then (a) the

symmetry of the tiling must be the same as that of the net.

Examples of other nets for which the proper tiling is unique

because of the high symmetry are the nets of Si in SrSi2 (srs),

of NbO (nbo), diamond (dia) and the nets of the body-

centered cubic (bcu) and face-centered (fcu) lattices (These

are the regular and quasiregular nets of Delgado-Friedrichs et

al., 2003a). It turns out that examination of approximately

1400 different nets in the RCSR database showed that over

500 have a unique proper tiling, but most of the rest admit

more than one such tiling (for a small fraction, we have found

no proper tiling). Indeed, a given net may admit some

hundreds of proper tilings (we give an example later). Our

search for natural tilings for these nets is guided in part by the

desire to preserve the tiles found in unique proper tilings when

they occur.

4. Further rules for natural tilings

Fig. 2 shows a tile of bcu and illustrates that the structure

contains two kinds of 4-ring, necessarily strong rings as they

are the smallest cycles in the structure. One set (non-planar,

see Fig. 2) forms faces of the tiles. The second set (planar)

intersect (cross) so that not all can be faces of tiles. Thus the

net can have a tiling in which the 4-face tile (a tetrahedron) is

subdivided into 3-face tiles (trihedra) but this can only use one

half of the planar rings reducing the symmetry from cubic to at
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Figure 1
(a) A tiling by cubes with the tiles slightly shrunk for clarity. (b) The same
with edges and vertices of the net emphasized. (c) Part of a tiling by half
cubes. (d) Part of a tiling by double cubes.

Figure 2
(a) Tiling for the net of the body-centered cubic lattice; tiles shrunk for
clarity. (b) One tile. (c) The skeleton of one tile with two face rings shown
as blue and green respectively. (d) The same skeleton but now blue and
green outline a pair of crossing rings.



most tetragonal. This example shows that to make a proper

tiling we must exclude as candidates for tiles rings that have

crossings with other rings of the same kind.

The detection of crossing is not as simple as this example

suggests. Ideally we would like a purely topological criterion

as nets and tilings are primarily topological constructs with

embeddings being of only secondary importance (but, of

course, vital in crystal-chemical applications). Clearly, we must

consider the whole structure – not just the tile. Indeed,

considering the skeleton of the bcu tile as a graph, the six rings

are all equivalent. In practice, at present we work with an

embedding. There is only one embedding of bcu with full

symmetry (Im�33m) and it is ‘obvious’ which rings cross and

which do not. But to show that the problem is non-trivial, we

show (Fig. 3) a tile from another net, ifi, which again has

vertices in fixed positions at maximum symmetry (I4132). The

faces are all very non-planar and it is not trivial to find an

algorithm that decides whether the rings intersect. Indeed, in

the paper introducing this net (Delgado-Friedrichs et al.,

2006), no tiling was given.

Examination of the tiles for nets that have unique proper

tilings suggests the following further rules for constructing

natural tiles when there is more than one possible proper tiling

for a net. (b) We require that the tiles do not have one face

that is larger (has more edges) than the other faces of the tile;

as discussed below (x6), we call this the condition that the

faces are locally strong (in what follows ‘strong’ means ‘locally

strong’). In x8, we discuss a rarely occurring situation in which

we may want to override this rule. (c) If a tile has non-face

strong rings and if further these rings do not intersect other

such rings, the tile is split so that these rings become faces of

smaller tiles.

The reasons for these rules are so that tiles such as the

tetrahedra and octahedra of the net (fcu) of the face-centered

cubic lattice are conserved in tilings of lower-symmetry nets.

Rule (b) ensures that even when allowed by symmetry a tile

such as an octahedron is not subdivided into e.g. two square

pyramids. Similarly, rule (c) ensures that tiles such as a fused

pair of face-sharing tetrahedra or octahedra are divided into

pairs of tetrahedra or octahedra, respectively. Examples are

shown in Fig. 4. There the net with symbol mbc (this is the Mo

structure in Mo2BC) contains octahedra which can be

dissected into pairs of square pyramids without lowering the

symmetry (Cmcm) but forbidden by rule (b). In the net tcj

(this is the net of hc = ABAC closest sphere packing), the

symmetry (P63=mmc) allows the fusion of pairs of tetrahedra

or pairs of octahedra, but rule (c) forbids this.

These rules are still insufficient to yield a unique natural

tiling for more-complex nets. There remains the case where

tiles contain intersecting non-face strong rings. Then we use

rule (d): if one of a pair of intersecting strong rings is smaller
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Figure 3
Views from two directions of one of the [8.102] tiles for the net ifi tile
exhibiting very twisted 10-sided faces.

Figure 4
Top: tilings for mbc: left a natural tiling 3[34] + [38] + [36.42] (yellow, cyan,
red), right a tiling 3[34] + 3[34.4] + [32.43] violating rule (b). Bottom: tilings
for tcj: left a natural tiling [34] + [34] + [38] (yellow, green, cyan), right a
tiling 2[34] + [36] + 2[38] violating rule (c).

Figure 5
Top: a tile [32.4.52] of an isohedral tiling of the net eci with its skeleton on
the right. Bottom: two tilings [4.52] + [32.52] (left) and [4.52] + [32.42]
(right) compatible with rules (a)–(c) derived by splitting that tile. Rule (d)
selects the one on the right as the natural tiling.



than the other, the larger is rejected as a possible face. If the

intersecting rings are the same size, we reject both as possible

faces.

We now give examples of application of rule (d). The net eci

has an isohedral tiling (Fig. 5) [32.4.52] that contains inter-

secting non-face strong 4-rings and 5-rings. Using the 4-ring to

split the tile gives the tiling [32.42] + [4.52] and splitting using

the 5-ring gives the tiling [32.52] + [4.52]. Both the last two obey

rules (a) to (c) but we prefer the former as the natural tiling

because one of the tiles has smaller faces.

The net with symbol mcf with symmetry Cmmm has two

different tilings [63] + [65] (Fig. 6). We note however that the

two possibilities correspond to two different dissections of a

tile [64] into two tiles [63]. We note further that the [64] tile

occurs in other higher-symmetry nets such as mot (symmetry

P4=mmm), where it cannot be split without lowering the

symmetry (mot is an example of a net with a unique proper

tiling). As we want the same tiles to be part of natural tilings of

different nets (cf. the discussion of tetrahedra and octahedra

above), we do not use either of the intersecting 6-rings as faces

and the natural tiling is [64] + 2[65] (Fig. 6). To further justify

this procedure, we recall that intersecting strong 4-rings are

rejected as possible faces in the tiling of bcu.

5. Two-face edges and pairs of tiles sharing more than
one face

We would prefer that at least three tiles meet at an edge. If

only two faces meet at an edge, those two faces must be shared

by the same pair of tiles. Accordingly, the dual structure will

have a pair of vertices joined by two edges. So, two-face edges

are to be avoided if possible; this is usually provided by the

rules (a)–(d). However, sometimes two-face edges cannot be

avoided – Fig. 7(a) gives a simple example of a tiling by tiles

that are topologically equivalent to pentagonal dodecahedra

[512]. From the point of view of the tiling, the two-face edges

are superfluous and one could remove them; however, from

the point of view of the net (cdh), all edges are an integral part

of the structure and their removal would simply give another

net. In this example, one must either accept the tiling shown or

concede that there is no natural tiling. We prefer the first

alternative as we have found that several zeolite nets only

admit tilings with two-face edges.

Another simple example (tiling of net fsh) is shown in Fig.

7(b). In this case, there is an alternative tiling without two-face

edges as shown in Fig. 7(c). However, in this last case, there

are tiles [yellow in Fig. 7(c)] that are [43.8] and thus violate

rule (b) by having one face larger than all the rest, so we prefer

the first alternative (Fig. 7b).

As a variation on this theme, we call attention to the tiling

for the zeolite framework UOZ shown in Fig. 8. Pairs of blue

tiles share two hexagonal faces so the dual has the same

problem of vertices linked by multiple edges. Notice that this

situation cannot be avoided without lowering the symmetry of

the tiling. However, in this case, there are no two-face edges.

In fact, four tiles meet at each vertex, three at each edge and

two at each face, but the tilings are not simple because the tiles

are not all simple polyhedra.
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Figure 7
(a) A tiling by dodecahedra, [512] (net cdh); the long edges are two-face
edges. (b) Another tiling with two-face edges (net fsh) with [46.62] tiles.
(c) An alternative non-natural tiling for the net in (b) with red tiles [62.82]
and yellow tiles [43.8], the latter have a weak-ring face.

Figure 8
Part of a tiling 2[46] + [42.64] + [410.620] for the net of the zeolite
framework UOZ. Pairs of blue tiles share two hexagonal faces.

Figure 6
Top left: natural tiling [64] + [64.82] for net mot. The other three tilings
(from top right clockwise: [64] + 2[65] – red and green respectively; [63] +
[65]; [63] + [65]) are for mcf and all obey rules (a), (b) and (c). The one on
the top right [64] + 2[65] obeys rule (d) as well and has the same tile (red)
as mot.



6. Locally or globally strong rings?

Rule (b) requiring that no face of the tile is larger than all the

rest is automatically satisfied if only strong rings (rings that are

not the sum of smaller rings) are allowed. However, there are

practical problems in finding strong rings in a complicated

structure. We know that there is a finite number of rings (and

hence strong rings) but we do not know a priori how large the

largest ring is, and, as there is an infinite number of cycles of

ever increasing size, the problem of knowing when to stop

examining cycles to see if they are rings is not trivial. Even if

we have a complete set of rings, the problem of determining

whether a given ring is strong can require examination of sums

involving rings far from the ring in question. Fig. 9 illustrates

this last point. It shows part of a tiling by three kinds of tile;

the red tile has face symbol [318.67] so no one face is bigger

than the rest. However, as shown in the figure, groups of tiles

can be joined together to give a solid (not a tile because there

are internal edges and faces) with face symbol [36.418.6] so that

the 6-ring (the only one visible in the right part of the figure) is

the sum of six 3-rings and eighteen 4-rings and thus not a

strong ring. Nevertheless, we accept that ring as the face of a

tile in a natural tiling.

In the context of molecular chemistry, strong rings are

called relevant cycles (Berger et al., 2004). However, in view of

the difficulties alluded to above, we prefer to consider the

faces of the tiles of a natural tiling as a uniquely defined

fundamental set (we believe that all rings of the net can be

expressed as a sum of these) which we call essential rings

(Delgado-Friedrichs et al., 2003a). The essential rings are not

necessarily a minimal set, however. Indeed, for some nets we

find there are several maximal proper tilings (tilings with

minimal transitivity) and we have not developed criteria for

preferring one of these over the others.

7. Nets with catenated rings

It has long been recognized that the nets of some known

crystals such as the coesite form of SiO2 have rings that are

catenated by other rings (O’Keeffe, 1991) and many more

examples have been found in metal organic frameworks

(Carlucci et al., 2003a,b). Clearly such rings are not eligible to

be faces of tiles, but tilings still may exist for the net, as indeed

is the case for the coesite net (coe). Elsewhere (Delgado-

Friedrichs et al. 2005), attention was drawn to a net fnu that

can be derived as follows. Take two diamond (dia) nets that

are the nets of a pair of self-dual dia tilings. Every 6-ring of

one net is catenated with a 6-ring of the dual net. Now to form

fnu make a link between pairs of vertices on separate nets so

that every vertex is now 5-coordinated. The additional link

makes additional 6-rings and it transpires that these alone are

sufficient to make a tiling for the new net as shown in Fig. 10

and this tiling is a unique natural tiling for the net.

Also shown in the figure is the tiling dual to that for fnu. It

may be seen that the tiling is not natural as a [68] tile has been

split into two [64.12] tiles. The net of the dual tiling is in fact

that of the NbO net (nbo) for which the [68] tiling is natural.

8. Some remaining problems

Nets without full-symmetry faithful embeddings. As has been

discussed elsewhere (Delgado-Friedrichs & O’Keeffe, 2003;

Delgado-Friedrichs et al., 2005), for a small class of nets there
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Figure 10
(a) Part of a tiling for the net fnu. (b) The net showing two catenated rings
(blue and red). (c) One tile [64]. (d) Two tiles of the dual tiling which
carries net nbo.

Figure 9
Part of a tiling with three kinds of tile: [63] (blue), [32.42.62] (green) and
[318.67] (red). No ring is locally weak, but as shown on the right one 6-ring
is globally weak.



is not a faithful embedding at maximum symmetry. By this we

mean that, in the maximum symmetry, edges may of necessity

intersect at points that are not vertices. A common reason is

that, at full symmetry, a [34] tetrahedron collapses to a square

with intersecting diagonals on a mirror plane, so a tile (a

tetrahedron is necessarily a natural tile) collapses to zero

volume. Although rare, it is not unknown in crystal chemistry

(see the example of the net of moganite anions, discussed by

Delgado-Friedrichs et al., 2005) and we have to do what nature

does and use a lower-symmetry embedding.

Non-crystallographic nets. There are nets with automorph-

isms that do not correspond to crystallographic symmetry

operations (Delgado-Friedrichs & O’Keeffe, 2003). We can

still find tilings for them – see for example the net bcr

discussed by Delgado-Friedrichs et al. (2005). As they have yet

to be encountered in crystal chemistry, we defer further

consideration until another occasion.

Possible tiling with tile faces that are weak rings. In a survey

(unpublished data) of natural tilings for zeolite nets, we came

across a few examples where we felt it might be more ‘natural’

to split larger tiles into smaller components, some of which

have weak rings as faces. Two examples are shown in Fig. 11.

To find a possible criterion for when to split, we note that,

for a tiling of a two-dimensional surface of genus g with k

vertices, each with vertex symbol n1.n2 . . . ni, Euler’s equation

may be written (cf. O’Keeffe & Hyde, 1996, p. 407)

P
k

�k ¼
P

k

1�
P

i

ð1=2� 1=niÞ

� �
¼ 2� 2g:

2��k is the angular deficit, so called because if the polygons ni

meeting at the vertex were regular its value would be the

difference 2� � sum of the angles at the i n-gons. For a closed

surface (polyhedron) with g = 0, the sum is positive; for plane,

torus etc., with g = 1, the sum is zero; for surfaces with higher

genus (negative curvature), the sum is negative. We propose

that, if a tile has one or more ‘waists’ that are weak rings, the

tiles can be split at that ring if (a) � for all the vertices on that

ring is negative, and (b) all the vertices on that ring have

valence four or greater. According to these criteria, the tiles in

Fig. 11 are split as shown. In these examples, the larger tile

after the split is the �-cage, which occurs in the nets of several

zeolites, for example LTA and RHO in which the �-cage is

part of the unique proper tiling. We agree that the rule is

arbitrary but, in our experience, the need for it is rare (e.g. for

only 4 of 176 zeolite nets) and occurs only for relatively

complex nets. Indeed, rather than considering it a rule, we

should think of it as a dispensation to break rule (b) in

exceptional circumstances. When it is applied, we can signify

the fact by referring to the tiling as a ‘modified natural tiling’.

9. What use are tilings for nets?

The reader at this point may be wondering what are the

advantages of having a tiling for a net. Here we list some that

occur to us.

(a) The natural tiling provides a natural division of space by

the net that enables the size and location of the cavities

(‘holes’) to be identified. This is particularly satisfying if the

number of kinds of tile is small. In fact, the natural tiling gives

all ‘topological’ cavities in the net, i.e. the cavities irrespective

of their size and shape. For a particular embedding of the net,

we may then decide what cavities are significant from the

geometrical point of view, for instance, to include interstitial

particles of a given size.

(b) The faces of the tiles provide a complete set of rings in

the structure (essential rings) in the sense that all other rings

are combinations of these. Like the correspondence between

tiles and cavities, they represent a set of windows or channels

connecting cavities.

(c) The occurrence of the same tiles, or sets of tiles, in

separate structures suggests structural relationships.

(d) It is possible that in some cases particular tiles may form

in the synthetic process due to structure-directing agents such

as templates. The recognition of tiles in hypothetical structures

may then lead to identification of possible synthetic strategies.

(e) Associated with the tiling is a transitivity. This is very

useful in establishing a taxonomy of nets (Delgado-Friedrichs

et al., 2007).

( f) Every tiling has a dual, so for every net we can identify a

second net (‘dual net’) that is the net of the dual of the natural

tiling. Nets with self-dual tilings tend to occur in crystals as

intergrown/interpenetrated pairs or multiplets [for more on
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Figure 11
Tiles of tilings for nets of zeolite frameworks LTN and UFI. Top: single
tiles if no weak-ring faces are allowed. Bottom: The same split by weak
rings (red). LTN [454.656]! 6[47.68.8] + [412.68.86], UFI [422.58.616.84]!
2[45.54.64.8] + [412.68.86].



interpenetration, see Blatov et al. (2004) and Baburin et al.

(2005)]. The dual net corresponds to the system of cavity

centers and channel lines and can represent, for instance, the

conduction pattern in fast-ion conductors (cf. Blatov et al.,

2006).

(g) The tiles of the dual net are, in a way, the space

‘belonging’ to the original vertex in that tile – what Schoen

(1970) refers to as the domain of a vertex. This idea leads to a

nice description of the structures of complex intermetallic

compounds (O’Keeffe, to be published).

10. Summary of rules, their computer implementation,
and results

The rules that we propose for determining a unique natural

tiling are

(a) the tiling must have the symmetry of the net (be proper);

(b) the faces of tiles must be locally strong rings (no tile has

one face larger than the rest);

(c) a tile does not have non-face strong rings that do not

intersect other such rings;

(d) when rules (a)–(c) result in multiple tilings because of

intersecting strong rings, we use only the smaller of a pair if

the intersecting rings are unequal in size and reject both if the

intersecting rings are equal in size;

(e) rule (b) may be overridden for tiles with waists of all

negative-curvature vertices.

The program TOPOS (Blatov, 2006, see also http://

www.topos.ssu.samara.ru/) has among its many capabilities the

ability to determine natural tilings. The following algorithm is

used. (i) All rings up to a certain size are found. In practice, all

rings can almost always be found by making this size suffi-

ciently large. (ii) Rings are then typified as weak or strong by

checking all ring sums up to a specified sum size (nmax) and

weak rings rejected. (iii) Further rings are then rejected as not

forming an essential set of faces if they are catenated with

other rings or if they intersect with other rings of the same

kind. (iv) The remaining rings are arranged into sets such that

no pair of rings in a set intersect (intersecting rings cannot

both be tile faces). (v) Candidate tilings are formed from each

of these sets of strong rings. (vi) If there are tiles with locally

weak rings, nmax is increased up to nf � 1, where nf is the

number of faces in the largest tile of this type and the

procedure repeats starting from step (ii). (vii) If there is more

than one possible tiling, then a tiling is formed rejecting

intersecting rings unless one is smaller than the others [this is

rule (d)]. (viii) The conditions described in x8 may optionally

be used to find ‘waists’ of the tiles and to get a modified

natural tiling.

For complicated nets, these calculations are far from trivial

and would be impossible to do by hand. Let us consider the

net of the zeolite framework USI. At the first step, TOPOS

finds 26 kinds of non-equivalent ring on checking all circuits

up to size 20: five 4-rings, eight 6-rings, one 10-ring, six 12-rings

and six 16-rings. Applying rule (a) only, it is found that the net

admits 752 different proper tilings utilizing different sets of

these rings.

However, one 6-ring is included in tiles [43.6], so it is the

sum of three smaller rings and hence a weak ring. Using nmax =

3, TOPOS rejects it at the second step.

At step (iii), TOPOS determines that there are no caten-

ated rings in the net, but one 6-ring, three 12-rings (12a, 12b,

12c) and all 16-rings cross with other rings of the same kind

and are also to be rejected as inessential rings (they cannot be

faces in proper tilings).

At the next step, TOPOS finds that two remaining 12-rings

(12e and 12f ) cross with each other and therefore cannot

belong to the same set of essential rings. Thus there are two

sets of essential rings that form two tilings at step (v) according

to rules (a)–(c). These tilings are similar and have the

same signature 4[63] + 2[42.62] + [42.64.102] + 2[46.6.122] +

[48.62.102.122], but the tiles [46.6.122] in different tilings contain

different 12-rings: 12e or 12f. There are no more locally weak

rings in those tilings [step (vi)], so rule (d) may be applied and

both the 12e and 12f rings rejected. Accordingly, at the last

step [(vii)], TOPOS uses all 4-rings, six 6-rings (except one

weak and one inessential), one 10-ring and the one 12-ring

(12d), common for both tilings, to construct a unique tiling

that has signature 4[63] + 2[42.62] + [42.64.102] + [48.62.102.122]

+ [412.62.122]. The transitivity is 5 12 13 6 (six kinds of tile as

there are two different [63] tiles).

The most complicated zeolite net we have examined, that of

IM-5 (Baerlocher et al., 2007), has a natural tiling with tran-

sitivity 24 47 41 19. In all, we found 281 different tiles in

zeolite nets.

In our work, we also use a local program 3dt written by one

of us (ODF) that accepts tiling data from TOPOS in the form

of coordinates of vertices on a representative of each kind of

face and a space group that is used only to generate symmetry-

related faces. 3dt then computes the Delaney–Dress symbol

(see e.g. Delgado-Friedrichs et al., 1999) and from that

computes the true symmetry (which may be different from

that input), transitivity and signature of the tiling, checks to

see if it obeys rules (b) and (c), and finds an embedding

suitable for illustration (all the figures in this paper were made

using 3dt).

At the time this work was completed, the RCSR database

had 1401 distinct topologies (i.e. eliminating alternative

embeddings of the same net, and interpenetrating nets) and all

have been examined by TOPOS. For 550 of these there was

just one proper tiling.1 Applying also rules (b) and (c) results

in a unique tiling for 1266 nets. For a further 92, rule (d) results

in a unique tiling so we have natural tilings for a total of 1358

nets (97% of all). Of the remaining nets, four had multiple

tilings and for 39 no tiling was found due to self-entanglement

of the net. For seven cases, tiles could be split according to rule

(e). Details of the tilings are being incorporated in the RCSR

database.

All the 176 recognized zeolite nets (most of these are not in

the RCSR) yielded a unique natural tiling, but for four of
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1 TOPOS considers only rings and strong rings so does not find the rare cases
in which a proper tiling can be constructed using cycles that are not rings as
faces. These of course violate rule (b) automatically.



those rule (e) could be applied. A full analysis of zeolite tiles

and tilings will be published elsewhere. A review (Delgado-

Friedrichs et al., 2007) described some 3-periodic nets of

special interest in crystal design. 26 of the 28 uninodal nets

listed there have unique proper tilings, as do 19 of the 30

binodal nets and all have unique tilings using rules (a)–(c). We

remark that most of the nets of greatest interest in crystal

chemistry (including all zeolite nets) have embeddings in

which there are no inter-vertex distances shorter than edge

lengths (see Delgado-Friedrichs et al., 2005) and it is mainly

with these that we are concerned. But it should be recognized

that these are just a miniscule part of the infinite universe of

nets, most of which probably will not admit tilings at all.
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